A Co-Design Framework with OpenCL Support for Low-Energy Wide SIMD Processor

نویسندگان

  • Dongrui She
  • Yifan He
  • Luc Waeijen
  • Henk Corporaal
چکیده

Energy efficiency is one of the most important metrics in embedded processor design. The use of wide SIMD architecture is a promising approach to build energyefficient high performance embedded processors. In this paper, we propose a design framework for a configurable wide SIMD architecture that utilizes an explicit datapath to achieve high energy efficiency. The framework is able to generate processor instances based on architecture specification files. It includes a compiler to efficiently program the proposed architecture with standard programming languages including OpenCL. This compiler can analyze the static memory access patterns in OpenCL kernels, generate efficient mappings, and schedule the code to fully utilize the explicit datapath. Extensive experimental results show that the proposed architecture is efficient and scalable in terms of area, performance, and energy. In a 128-PE SIMD processor, the proposed architecture is able to achieve up to 200 times speed-up and reduce the total energy consumption by 50 % compared to a basic RISC processor.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient SIMD Vectorization for Hashing in OpenCL

Hashing is at the core ofmany efficient database operators such as hash-based joins and aggregations. Vectorization is a technique that uses Single Instruction Multiple Data (SIMD) instructions to process multiple data elements at once. Applying vectorization to hash tables results in promising speedups for build and probe operations. However, vectorization typically requires intrinsics – low-l...

متن کامل

OpenCL + OpenSHMEM Hybrid Programming Model for the Adapteva Epiphany Architecture

There is interest in exploring hybrid OpenSHMEM + X programming models to extend the applicability of the OpenSHMEM interface to more hardware architectures. We present a hybrid OpenCL + OpenSHMEM programming model for device-level programming for architectures like the Adapteva Epiphany many-core RISC array processor. The Epiphany architecture comprises a 2D array of low-power RISC cores with ...

متن کامل

Executing Process Networks on Heterogeneous Platforms using OpenCL

Upcoming heterogeneous systems ask for new programming paradigms. Abstracting the underlying hardware architecture is desirable in order to support productive software development. This thesis proposes a design flow and runtime-system for executing process networks on heterogeneous systems using OpenCL. Process networks are a popular model of computation for deterministic parallel programming a...

متن کامل

Ultra-Low-Energy DSP Processor Design for Many-Core Parallel Applications

Background and Objectives: Digital signal processors are widely used in energy constrained applications in which battery lifetime is a critical concern. Accordingly, designing ultra-low-energy processors is a major concern. In this work and in the first step, we propose a sub-threshold DSP processor. Methods: As our baseline architecture, we use a modified version of an existing ultra-low-power...

متن کامل

OpenCL Sparse Linear Solver for Circuit Simulation

Sparse linear systems are found in a variety of scientific and engineering problems. In VLSI CAD tools, DC circuit analysis creates large, sparse systems represented by matrices and vectors. The algorithms designed to solve these systems are known to be quite time consuming and many previous attempts have been made to parallelize them. Graphics cards have evolved from specialized devices into m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Signal Processing Systems

دوره 80  شماره 

صفحات  -

تاریخ انتشار 2015